فایلار
Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages
اطلاعات بیشتر

کارآموزی اصول نقشه برداری

کارآموزی اصول نقشه برداری

دسته بندیعمران
فرمت فایلdoc
حجم فایل۱۴۵ کیلو بایت
تعداد صفحات۵۰
برای دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل

فهرست

عنوان

مقدمه. ۱

مقدمه وتاریخچه نقشه برداری. ۲

مروری بر نقشه برداری زیر زمینی. ۸

اصطلاحات نقشه برداری زیر زمینی:. ۸

شرایط خاص نقشه برداری در زیر زمین:. ۹

نکات ایمنی در تونل و زیر زمین:. ۱۰

روشهای کلی نقشه برداری زیر زمینی:. ۱۰

مراحل طراحی پروژه های زیر زمینی:. ۱۰

طراحی اجرای عملیات حفاری:. ۱۱

طراحی کلی تهیه نقشه از زیر زمین:. ۱۱

ایستگاه گذاری در زیر زمین:. ۱۲

عملیات نقشه برداری مسیر. ۱۳

ترازیابی:. ۱۳

جدول ترازیابی. ۱۳

طول یابی :. ۱۴

دو اصل مهم در تهیه پروفیل :. ۲۳

رسم پروفیل. ۲۴

تهیه نقشه توپوگرافی. ۲۸

نقشه برداری با زنجیر Chain Surveying. 34

مراحل اساسی احداث یک مسیر راه به ترتیب از قرار زیر است:. ۴۱

مقدمه

به طور کلی نقشه برداری را می­توان علم تهیه و پیاده کردن نقشه دانست . اما به دلیل گستردگی زیاد این علم در دنیای امروز تعریف بالا را نمی توان جامع دانست . کنترل کارهای اجرایی و تعیین میزان نشست ساختمانهادر عملیات ساختمانی و مونتاژ واحدهای تولیدی و صنعتی ، طرحهای مربوط به تسطیح اراضی در شهرسازی و کشاورزی ، و کنترل دایمی انحراف سدها از نظر فشار آب در تاسیسات آبی انتقال نقاط و امتدادها در معادن و راههای زیرزمینی ، بررسی تغییرات پوسته زمین در زمین شناسی وژئو فیزیک ، تعیین میزان عمق آب و تهیه نقشه های دریانوردی در کشتیرانی و بندر سازی ، تهیه نقشه های دریا نوردی در کشتیرانی و بندر سازی ، تهیه نقشه ابنیه و آثار تاریخی در باستان شناسی پیکره های دیگری از دامنه فعالیتهای علم نقشه برداری را تشکیل می دهد .

به طور کلی نقشه برداری را می­توان علم تهیه و پیاده کردن نقشه دانست . اما به دلیل گستردگی زیاد این علم در دنیای امروز تعریف بالا را نمی توان جامع دانست . کنترل کارهای اجرایی و تعیین میزان نشست ساختمانهادر عملیات ساختمانی و مونتاژ واحدهای تولیدی و صنعتی ، طرحهای مربوط به تسطیح اراضی در شهرسازی و کشاورزی ، و کنترل دایمی انحراف سدها از نظر فشار آب در تاسیسات آبی انتقال نقاط و امتدادها در معادن و راههای زیرزمینی ، بررسی تغییرات پوسته زمین در زمین شناسی وژئو فیزیک ، تعیین میزان عمق آب و تهیه نقشه های دریانوردی در کشتیرانی و بندر سازی ، تهیه نقشه های دریا نوردی در کشتیرانی و بندر سازی ، تهیه نقشه ابنیه و آثار تاریخی در باستان شناسی پیکره های دیگری از دامنه فعالیتهای علم نقشه برداری را تشکیل می دهد .

مقدمه وتاریخچه نقشه برداری

۱ – مقدمه :

اندازه گیری طول وزاویه اساس اکثر عملیات نقشه برداری را تشکیل می دهد اندازه گیری مستقیم فاصله یکی از دشوارترین عملیات از نقطه نظر اجرایی است خصوصا اینکه دقت بالایی هم مورد نیاز باشد در نتیجه روشهای مختلفی برای اندازه گیری غیر مستقیم طول ابداع شده است که یکی از آنها بکارگیری طولابهای الکترونیکی است .

امروزه عملا نوارهای متر کشی و روشهای دیگر اندازه گیری غیر مستقیم طول مانند سیر بارلاکتیک وغیره در غالب عملیات نقشه برداری جای خودرا به طولیا بهای الکترونیکی داده اند همان گونه که با ساخت نوارهای فلزی متر کشی زنجیرهای مساحتی و واحدهای مربوطه وقواعد استفاده از آنها رفته رفته منسوخ شدند با پیدایش طولیا بهای الکترونیکی نیز سر نوشتی مشابه برای نوارهای مترکشی رقم خورد.

با پیشرفت علوم الکترونیکی تجهیزات نقشه برداری نیز چهره کاملا جدیدی پیدا کردند اما ارمغان تکنولوژی نوین بیش از آنکه بر اندازه گیری زاویه اثر بگذارد بطور فاحشی نحوه اندازه گیری طول را دگرگون کرد.

روند پیشرفت فنی تجهیزات نقشه برداری با ساخت طولیابهای الکترونیکی پایان نیافت بلکه با ساخت طولیابهای نسبتا کوچک امکان الحاق آنها به تئودولیتهای اپتیکس و الکترونیکی فراهم آمد.محصول جدید را که توتال استیشن می نامند بتدریج در حال جایگزینی طولیابهای منفرد است با روند موجود یعنی با عرضه روبه تزاید سیستمهای تعیین موقیت جغرافیایی (جی پی اس) از یک سو و ساخت توتال استیشن ها از سوی دیگر خط تولید اکثر طولیابهای مستقل ومنفرد روبه تعطیلی دارد.

تکنولوژی ساخت طولیابهای الکترونیکی در انحصار کشورهای پیشرفته صنعتی قرار دارد واز اینرو بنابه علل اقتصادی وفنی تولید اینگونه تجهیزات در اکثر کشورهای دیگر مقرون به صرفه نیست در حال حاضر کشورهای ایالات متحده آمریکا ژاپن سوئد سوئیس آلمان فرانسه بریتالیا وآفریقای جنوبی وروسیه عمده ترین سازندگان طولیابهای الکترونیک هستند با افزایش لوح رقابتهای تجاری چندی است شرکتهای مشهور اقدام به انتقال کارخانجات خود به چین کرده اند به این ترتیب چین نیز به جرگه تولید کنندگان طولیابهای الکترونیکی پیوسته است .

۲- طبقه بندی طولیابها :

طولیابها را می توان به روشهای مختلف طبقه بندی کرد یکی از این راها میتوانند براساس طول موجی باشد که آنها ارسال ودریافت میکنند به این ترتیب این طولیابها دردو دسته بزرگ قرار می گیرند :

الف- طولیابهای الکترواپتیکی :به آندسته از دستگاههای اطلاق می شود که نور با محدوده مادون قرمز مجاور نور مرئی ویا لیزر استفاده میکنند .

ب- طولیابهای میکروویو (ورادیویی):به آندسته از دستگاهها اطلاق می شود که از امواج رادیویی و مایکرو وویو (با فرکانسهای بمراتب پائینتر نسبت به دسته اول ) استفاده میکنند .راه دیگر دسته بندی طولیابها برپایه برد موثر آنهاست براین اساس میتوان آنها را در دو گروه بزرگ طبقه بندی کرد.

الف) کوتاه برد : دستگاههای این دسته بردی حداکثر ۵کیلومتر دارند وعموما اندازه آنها در حدی است که می توان آنها برروی یک تئوولیت نصب کرد محدوده فرکانسی آنها در محدوده مادون قرمز و نور مرئی قرار می گیرد اکثر کاربرد این دستگاه ها در کارهای نقشه برداری موضعی است .

ب ) متوسط / دوریرد : حداکثر برد این دستگاه ها قریب به ۱۰۰ کیلومتر می رسد ولی برد عملیاتی آنها در حد ۴۰-۵۰ کیلومتر قراردارد معمولا حجیم و سنگین هستند وبیشتر برای عملیات ژنودری آبنکاری و اقیانوس نگاری ویا ناویری دریایی هوائی استفاده می شود سیستم های که از لیزر استفاده می کنند اگرچه در طبقه بندی قبل در میان سیستم های الکترو اپتیکی قرار گرفتند لیکن نظر به برد آنها دراین نوع طبقه بندی در کنار سیستم های میکروویو قرار می گیرند .

۳- تاریخچه :

تسلادر سال ۱۸۸۹ استفاده از بازتاب امواج میکروویو را جهت اندازه گیری طول پیش بینی کرده بود نخستین ثبت اختراع در طولیاب با کاربرد امواج الکترو مغناطیسی در سال ۱۹۲۳ توسط نوری انجام گرفت نخستین طولیاب مایکروویو که براساس اصول تداخل کار می کرد در سال ۱۹۲۶ سه دانشمند روسی بنامهای شگولف برورشکو وریلر در ننینگراد ساخته شد.

فاصله یابی الکترونیکی غیر نقشه برداری در اوایل دهه ۱۹۳۰میلادی ابداع وبطور عملی برای نخستین بار در طول جنگ جهانی دوم توسط نیروهای نظامی آلمان و بریتانیا با کمک امواج رادار انجام می گرفت نحوه اندازه گیری فاصله به این ترتیب بود که امواج رادیویی پس از برخورد با بدنه فلزی هواپیما به فرستنده باز می گشت وبرمبنای جهت آنتن وزمان رفت وبرگشت موج امکان تعیین فاصله جهت حرکت و سرعت تقریبی هواپیمای مورد نظر میسر می شد دقت حاصله اگر چه برای رهگیری هوایی وامور نظامی کفایت می کرد اما درحد دقتهای مورد عملیات نقشه برداری نبود .

همانطور که درقسمت عنوان شد دستگاهای طولیاب الکترونیکی دردو دسته بزرگ دستگاههای الکترواپتیکی و مایکروویو / رادیویی طبقه بندی می شوند لذا از نقطه نظر تاریخی نیز تحولات انجام گرفته در این دودسته بطور جداگانه بررسی می شود با توجه به تقدم و تاخر زمانی ابتدا تاریخچه سیستم های الکترواپتیکی ذکر می شوند.

در زمینه طولیابهای با کاربرد نقشه برداری در سال ۱۹۳۶سه دانشمند روسی بنامهای لبدیف، بالا کوف و وافیادی از انسستیتو اپتیک اتحاد جماهیر شوروی مدعی ساخت نخستین طولیاب الکترواپتیکی دنیا شدند در پی آن در سال ۱۹۴۰هوتل آلمانی مقاله ای را منتشر کرد که در آن ازیک سلول کر دوبخش ارسال و یک فوتولوله دربخش دریافت استفاده شده بود این مقاله موجب شد تا دانشمند سوئدی اریک برگشترند برانگیخته شود تا براساس این مقاله آزمایشی رادر زمینه اندازه گیری سرعت نور انجام دهد دستگاه ساخته اودر سال ۱۹۴۳ تکمیل شد و ژئودیمتر نام گرفت.

درآن زمان تعیین دقیق سرعت نور مورد توجه بسیاری از دانشمندان بود ودر وهله اول تصور نمی شد این وسیله کاربردی در نقشه برداری اما در سال ۱۹۳۷ برگ اشترند به کمک شرکت آگا ساخته اش را بصورت یک محصول تجاری بعنوان نخستین طولیاب تجاری جهان با نام ان اس ام ۲ به بازار فروش ارائه کرد این دستگاه با استفاده از نور مرئی قادر بود فواصل تا۴۰کیلومتر را (فقط در شب ها ) اندازه گیری کند از آن به بعد شرکت آگا – ژئودیمتر همواره با ساخت دستگاههای جدیدتر در ردیف شرکتهای معتبر سازنده تجهیزات الکترونیکی نقشه برداری قرار داشته است.

رخداد مهم دیگر در زمینه دستگاههای الکترواپتیکی در سال ۱۹۵۴ اتفاق افتاد وآن کشف تکنیک هترودین بود که امکان تعیین اختلاف زاویه فاز را تحت فرکانسهای پائینتر مممکن ساخت نخستین دستگاهی که از این روش استفاده کرد دستگاه ژئودیمتر مدل ۱۶بود سیستمهای لیزری ازسال ۱۹۶۸ اندک اندک در میان طولیابهای الکترواپتیکی ظاهر شدند و نخستین آنها ژئودیمتر مدل ۸بابرد ۶۰کیلومتر بود.

اما نخستین طولیاب ساخته شده براساس استفاده از امواج مایکروویو و اندازه گیری اختلاف فاز توسط دکتر وادلی در سال ۱۹۵۴ساخته شد .

تا آن زمان برای حصول دقت وبرد بالای سیستمهای الکترواپتیکی اندازه گیری طول می بایست الزاما در شب انجام می گرفت که با استفاده از امواج مایکروویو این اشکال مرتفع شد. در سال ۱۹۵۷ دکتر وادلی ساخته اش رادر آفریقای جنوبی بصورت تجاری با نام تئورومتر عرضه کرد که بلافاصله جهت شبکه درجه یک ژئودزی استرالیا بکار گرفته شد این ساخته با استفاده از امواج نامرئی مایکروویو به بردی معادل ۸۰کیلومتر دست یافته شرایط محیطی از قبیل شب وروز وحتی به تاثیر اندک و یا حداقل اثر قابل محاسبه ای داشت تئورومترها کاربردی وسیع در عملیات ژئودزی یافتند وبعد از مدتی به همین سبب به هر طولیاب الکترونیکی که از امواج مایکروویو استفاده می کرد به اشتباه تئورومتر نام می دادند حتی اگر ساخت شرکت دیگری مانند زیمنس بود باید توجه داشت که تئورومتر تنها یک نام تجاری است.

در اواخر دهه ۱۹۶۰استفاده از لیزر در محدوده امواج مایکروویو نیز عملی شد وبا پیشرفت فنون الکترونیکی امکان ساخت طولیابهای جمع و جورتری مانند سی ای ۱۰۰۰ ساخت شرکت تلورومتر فراهم شد .

شوق نقشه بردارها در نتیجه امکان اندازه گیری مستقیم فواصل طولانی و رهائی از کار توانفرسای کشیدن نوارهای مترکشی و تمهیدات دست و پاگیر حصول دقتهای مورد نیاز بسیار زیاد بود لذا این امر باعث شد تا در روزهای اولیه طولیابهای الکترونیکی به خستگی ناشی از محاسبات عدیده برای استخراج مقدار طول از میان انبوهی از اعداد مشاهداتی توجه چندانی نشود اما بزودی نیاز به افزایش دقت و فزونی سرعت اندازه گیری و حذف روشهای مطول محاسبه طول به امری اجتناب ناپذیر جلوه گر شد و کار تا آنجا پیش رفت که امروزه اغلب دستگاهها تنها با زدن یک کلید طول تصحیح شده را به دست می دهند .

در اواسط دهه ۱۹۶۰ میلادی تکنولوژی ساخت نیمه هادیها ودر پی ساخت آن ساخت مدارهای مجتمع یا (آی سی )ها باعث شد تا شرکتها موفق به تولید انبوه طولیابهای کوچک الکترونیک شوند. به این ترتیب دستگاههائی که تنها کاربردی محدود در زمینه ژئودزی داشتند وفقط توسط کاربران ماهر قابل استفاده بودند کاربردی وسیع وعام تر یافتند دیگر نتیجه موج نوین الکترونیک این بود که تعداد سازندگان طولیابهای الکترونیک که زمانی از تعداد انگشتان یک دست فراتر نمیرفت به یکباره به بیش از دهها شرکت افزایش یابد در فصول بعد ضمن آشنایی با تعداد بیشتری از دستگاههای طولیاب الکترونیکی تاریخچه هریک به تفصیل ذکر خواهد شد .

۴ ـ اصول اولیه کار طولیابها :

گرچه برای درک اصولی و عمیق کارکرد یک طولیاب باید اطلاعاتی در زمینه فیزیـــــــک الکترونیک، مخابرات و… داشت لیکن آگاهی از اصول کار دستگاههای طولیاب بشکـــلی کلی حتی با دانش علم و دروس دبیرستانی میسر است لذا قبل از آنکه اساس اصلی ترین روش های اندازه گیری طول یعنی روش اندازه گیری اختلاف فاز و روش پالس میان جزئیات مبهم بماند در قدم اول این روشها مورد توجه قرار می گیرند طبیعی است با آشنائی بیشتر با مباحث فصول بعدی ایده های خام اولیه کامل و کاملتر شده و علت وجودی هر جزء طولیاب بهتر دانست همانطور که در دروس اولیه نقشه برداری گفته شده طولیاب موجی را ارسال می کند و پس از بازتاب آنرا دریافت می کند در برخی از دستگاهها این موج توسط دستگاهی مشابه دریافت و پس از تقویت باز پس فرستاده می شود (دستگاههای تلورومتر ) به عبارت دیگر برای اندازه گیری نیاز به دو دستگاه وجود دارد در دسته دیگر موج ارسالی توسط یک مانع مانند آینه بازتاب کننده یا رفلکتور (در دستگاههای مادون قرمز ) ویا سطح یک جسم (برخی از دستگاههای لیزری ) به دستگاه باز می گردد با نخستین فرمول دانش فیزیک در زمینه سرعت یکنواخت با در دست داشتن سرعت امواج وزمان طی مسیر میتوان طول را بدست آورد البته باید توجه داشت چون موج مسیر مورد نیاز اندازه گیری را یکبار هنگام ارسال و یکبار هنگام بازگشت پیمود طول بدست آمده راباید بر۲تقسیم کرد.

گرچه در کل این تغییر میتواند قابل قبول باشد لیکن در بررسی جزئیات امر در می یابیم که این گونه برداشت تنها در مورد بخش کوچکی از طولیابها یعنی طولیابهای مبتنی یر روش پالس صحیح است و تعمیم آن اشتباهی بزرگ است زیرا اصولا در اکثر طولیابها بهیچ وجه اندازه گیری زمان رفت وبرگشت بطور مستقیم انجام نمی گیرد علت اصلی این کار وابستگی شدید اندازه گیری زمان است برای وقوف کامل ازاین واقعیت مثال زیرا مورد بررسی قرار می دهیم .

مثال ۱- سرعت امواج مادون قرمز در یک دستگاه طولیاب ۳×108 متر برثانیه است:

الف- مطلوب است خطای طول اگر دقت اندازه گیری زمان ۱۰ثانیه باشد .

ب- مطلوب است دقت اندازه گیری در صورتیکه دقتی در حد یک متر لازم باشد .

پاسخ الف) x=nt

dx=ndt

dx=3310310=33102m!!

پاسخ ب) dt = dx/n =1/3310≈10-8sec

جالب است بدانیم تنها ساعتهای اتمی با ابعاد قابل توجه دارای دقتهای چنین هستند در عمل نیز آندسته از طولیابهاکه از اندازه گیری زمان استفاده می کنند بطورغیر مستقیم زمان واز طریق شمارش پالس زمان را بدست می آورند این روش را روشی پالسی تعیین فاصله می نامند روش دیگر روش اختلاف فاز است که اکثر طولیابهای امروزی از این روش استفاده می کنند ودر ادامه به آن پرداخته می شود.

بطور کلی با توجه به رابطه طول موج وفاصله مورد اندازه گیریمیتوان نوشت: D=nl+Pλ

که در آن D طول مورد نظر اندازه گیری X طول موج n مضارب صحیح طول موجود در D وP جزء کسری طول موج است در عمل طولیابها با استفاده ازمدارات الکترونیکی خود قادر به اندازه گیری مقدار P هستند ولی مقدار n بصورت مبهم باقی می ماند لذا تنها بکمک یک موج نمی توان هدو مجهول Dوn را بدست آورد دستگاههای طولیاب راههای مختلفی را برای بدست آوردن طول و حصول مجازی مقدار مبهم n (به تعبیری رفع ابهام) اتخاذ می کنند یکی از این معمول ترین راهها استفاده از چند موج (۲-۶فرکانس ) است .

اصطلاحا مقدار P را اختلاف زاویه فاز موج می گویند ومقدار آن بستگی به اختلاف زاویه فاز موج ارسالی وبرگشتی دارد مفهوم فیزیکی و توضیحات بیشتر درمورد مفهوم زاویه فاز در فصل بعد خواهد آمد در عمل رابطه اساسی طولیابی را بصورت زیر مورد استفاده قرار می دهند .

معادله ۱-۱ S= ½(nl+φλ/360)

مثال ۲- یکی از طولیابهای ساخته شرکت هیولت پاکارد از ۴فرکانس استفاده می کنند با توجه به جدول زیر فاصله اندازه گیری شده بدست آمده است .

فرکانس

اختلاف فازφ

طول موج(متر)

۱/۲(φl/360)

14.989625MHz

257°

20

7.139

1.4989625MHz

62°

200

17

149.89625KHz

150°

2000

416

14.989625KHz

123°

20 000

3416

طول نهایی:۱۳۹ر۳۴۱۷

مروری بر نقشه برداری زیر زمینی

نقشه برداری زیر زمینی که در غرب آن را با کلمه لاتین UNDER ground surveying می‌شناسند، شاخه ای از رشته مهندسی نقشه برداری است که شامل طراحی تونل، عملیاتهای اجرا و هدایت حفاری و بلاخره برداشت فضاهای موجود طبیعی و مصنوعی زیر زمین به منظور تهیه نقشه از آنها با توجه به شرایط خاص نقشه برداری در زیر زمین می باشد.

نقشه برداری زیر زمینی:

نقشه برداری زیر زمینی که در غرب آن را با کلمه لاتین UNDER ground surveying می‌شناسند، شاخه ای از رشته مهندسی نقشه برداری است که شامل طراحی تونل، عملیاتهای اجرا و هدایت حفاری و بلاخره برداشت فضاهای موجود طبیعی و مصنوعی زیر زمین به منظور تهیه نقشه از آنها با توجه به شرایط خاص نقشه برداری در زیر زمین می باشد. در اهمیت نقشه برداری و پیشرفتهای آن می توان به ایجاد تونل زمینی در زیر دریایی دانش که ارتباط بین پاریس و لندن را بر قرار کند اشاره کرد.
کلا نقشه برداری زیر زمینی شامل موارد زیر می باشد:

۱ طراحی (deign) در مرحله شروع پروژه

۲ اجرای عملیات حفاری (unearth control) هدایت تونل را بر عهده دارد.

۳ تهیه نقشه از زیر زمین

اصطلاحات نقشه برداری زیر زمینی:

۱ زیر زمین (UNDER ground): در اصطلاح عام به عوارض قابل دسترسی و یا طبیعی در داخل زمین می گویند.

۲ معدن (MINE): مجموعه تاسیسات زمینی و دانالهای زیر زمین که به منظور هدف خاصی احداث شده را معدن گویند. اصطلاحا به محل تجمع مواد معدنی نیز معدن می گویند.
۳ گالری( Gallery ): به دانالهای افقی زیر زمینی که از یک طرف به منظور خاصی مسدود است و خود یکی از راههای ورود به زیر زمین به شمار می رود گالری می گویند که به سه نوع (اکتشافی، آماده سازی، اصلی و فرعی )وجود دارد.

۴ تونل (tunnel ): دالان عبوری عریضی است که از دو طرف باز می شود و به انواع (افقی، مایل، مارپیچ، موجود می باشد.

۵ چاه (shaft): گالری قائمی که از راههای ورود به زیر زمین به شمار می رود و مقطع آن ممکن است دایره که در اروپا و آسیا مرسوم است )و یا مستطیل که در آمریکا مرسوم است باشد.
۶ رمپ (Ramp):رمپ یا شیب گذر، تونل شیب داری است که برای اتصال بین طبقات مختلف معدن به کار می رود اصطلاحا به آن بالارو یا پایین رو (دوبل ) نیز می گویند.

۷ گمانه (soundage): عبارت است از چاه کم قطر و عمیقی که برای نمونه برداری از لایه های زمین و جهت دادن به امتداد حفاری از آن استفاده می شود و در نوع (اکتشافی، و راهنما) موجود می باشد.
۸ حفاری: پیشروی در امر گود برداری زیر زمین که به وسیله ماشینهای حفاری و یا اکتشافی انجام می شود را گویند.

شرایط خاص نقشه برداری در زیر زمین:

۱ تاریکی و عدم نور کافی و محدودیت در استفاده از وسایل روشنایی برای معادنی که گازهای اشتعال‌زا تولید می کنند.

۲ محدودیت فضا و در نتیجه محدود شدن کنترلهای نقشه برداری و کم شدن درجه آزادی و دقت کار
۳ امکان تخریب و ریزش تونل در صورت عدم پوسته گیری در زیر زمین

۴امکان سقوط در چاه و یا فرو رفتن در زمینهای سست

۵ وجود گازهای خفه کننده ناشی از مواد معدنی

۶ ورود آبهای سطح الارضی به زیرزمین

۷ اختلالات مغناطیسی ناشی از مواد آهنی در زیر زمین و مشکلات کار با قطب نما
۸ وجود جریانات هوا در داخل تونل و به هم زدن تعادل شاقولهای آویزان در تونل
۹ تکانها و لرزشهای زیر زمینی ناشی از عملیات حفاری ( آتش کاری) و مشکل به هم خوردن تراز دستگاههای نقشه برداری و جا به جا شدن ایستگاهها
۱۰ کار نکردن دستگاههای مخابراتی مثل بی سیم و مبایل و همچنین گیرنده های GPS در زیر زمین
۱۱ سختی کار

رایگان اطلاعات بیشتر
سبد آیتم حذف شد برگرداندن محصول حذف شده
  • سبد خالی از محصول می باشد.